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ABSTRACT

ESTIMATING THE PARAMETER n OF THE BINCMIAL DISTRIBUTION
USING MOMENTS GENERATING FUNCTION APPROACH

~ Suppose X = (X X)) is a random sample from

17 e
b(n,p). Given observations « ==(ml, e ey mm), we want to
estimate n by using the moment generating function approach.
We discuss the two cases, p known and p unknown, separately.
For p known, the behavior of the moment generating function
based estimator for the parameter n is studied. This estima-
tor, say Sm,t' which depends on the sample size m and on an
auxiliary variable t is obtained as a solution of an equa-
tion generated by equating the theoretical momént generating
function to its empirical counter part.lIt is shown that for
any fixed t, Hm,t is strongly consistent for n, and for any
fixed m, ﬁm,t converges to the method of moment estimator
for n as £t —> 0 and Hm,t converges to X(m) = max(xl, ve ey
Xm), as t — «. Moreover, the limiting distribution of
ﬁm,t’ when either m — o and £t — 0 or £ —3 0 and m —>
», is shown to coincide with that of the method of moment
estimator. We compare the mean square error of am,t with the
mean square error of the other estimators such as, maximum
likelihood estimator, method of moments and Bayes estima-

tors, for selected values of t. Also, a comparison is made

. R
based on the bias. For p unknown, an estimator say n ,
(p,t)



for n can be obtained using this approach, but by solving
two equations for given'tl, t,. The stability of this esti-

mator is compared with the stability of other existing esti-

mators such as MLE, MME.

Based on these comparisons and taking into considera-

tion the simple form of n ., we recommend using it.
I .
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CHAPTER ONE
INTRODUCTION AND LITERATURE REVIEW

1.1. Preface

Estimators based on transforms of a  distribution
functioh have been extensively discussed and investigated in
numerous  Works in the literature (see, for example

Titterington, Smith and Makov, 1985).

There are +two main approaches for obtaining such
estimators. In one approach, the estimator is chosen to
minimize a certain distance between the theoretical and
empirical transforms. Suppose that for  some auxiliary
7ariable t EIT,

G(t|8) = Eg(t,X) = J g(t,c) dF(«|e)

provided the integral exists. If the sample space is dis-
crete, we replace the integral by sum and if « is multivar-
iate, then t is also vector valued.

If, also Egz(t,X) < w, for all t € T, Xl, oy Xm represent

a random sample from F(.|@) and if we define

m
§ﬁ(t) . E:_g(t'mi)’ then by the law of large numbers
= |

g, (t) —— G(t}e). A natural source of estimators for &,

therefore, is the minimization of some distance measure



between Em(.) and G(.|e) say
§[g,(-), G(.]6)], say

For example one may use the quadratic distance, that is

5[9,(-),G(.|8)] = J;c(t|e) - G (8)]? aw(t)

where w(.) is a positive weighting measure on T.

Quandt énd. Rémsey (1978) applied the moment generating
__function {MGF)} method to five parameters normal mixture,
using the quadratic distance, that 1is, if a sample
observations mi, veer & is given on a random variable X,

where_it is_knqwn that

X ~ N(ul,ai) with probability A

and
X ~ N(uz,og) with probability 1~
The parameters a, Mogo My, wi, ag being unknown. The

parameter estimates are obtained by minimizing

5 m
1 2 2 1l 2.2 2
[TH ole Jry ol [T o == i o _ t.x.
E [A & 17327173 + (1-A) e 273 27277 m L E e J 1}
J=1 i=1

In the second approach, the estimator is taken to be
the solution of an equation obtained by equating the

theoretical transform with its empirical counter part.

shaul, K. Bar~-Lev, N. Barkan and N. A. Langberg (1993)

adopt the " second appreoach and tonsider the problem of



estimating the natural parameter of a natural exponential
family. The transform that they used for this purpose is the
moment generating function (MGF). That is, if X is a r.v
distributed according to the probability distribution

Fo(dx) = expl@X = k(6)] v(dx), where k(8) = InT(6),

T(8) = Jegx V(dx) and V be a positive, o-finite measure on

R, with support S containing at least two points. The MGF
pased estimator for €, on the basis of the sample X a.(Xl,

ceny Xm) is the solution of the egquation

A . m .
Ea(etxl)'= m‘l'E: o (1)
| 1=1
or, equivalently, of the equation
.- [ . m tx,
k(e+t) - k(@) = fn|m E: e ].
i=1

The solution for (1), if it exists, depends on the sample

size m, the sample elements Xyr v X # and the auxiliary

A

variable t. They denoted this solution by Iy it exists
F
with probability 1, and is given as the unigque solution of

(1}. Also, they showed that for any fixed ¢, 6 . is
f

strongly consistent for 8 as m —> ®; and for any fixed m,

A

6 . converges to §m, the MLE for &, as t — 0. Further-

more, they showed that the limiting distribution of ém L1 as
@t , '

either m — @ and £ —— 0, or as t —— 0 and W —— =,



coincides with that of §m.
These asymptotic results suggest, in some situations,
A
the use of 6 ., with large m and small t as an alternative
4 5

to the MLE.

1.2 Statement of the problem

The problem is as follows: Suppose X;, ..., Xm are a
random sample from binomial distribution with parameter n

we want to

and p b(n,p). Given observations @9 wene Lps

estimate n by using the method of moment generating func—
tion. Aalso we discuss the cases p Known and p unknown

separately.

Note that the binomial distribution when n is unknown
does not belong to the exponential family and hence the
problem we are considering is not a special case of the work

of Shaul k-Bar-Lev, N. Barkan and N. A. Langberg (1993).

Estimation of the pafameter n in the binomial distribu-
tion can be useful in practice. Draper and Guttman (1971)
gave the following example: "Suppose for example, that the
Apex Appliance company wishes to estimate the number of a
certain type of appliance in uselin a certaln service area.
Suppose further that the company believes that the weekly

total of defective appliances sent in for repair (irrespec-



tive of age) arises with a binomial probability p about
whose value they have some prior knowledge. Then a count «
of the number of defective appliances received during a
routine week could be used to cast light on the population

size n".

The following is another example which was introduced
by Rukhin (1975): "Let us assune n animals are randomly and
uniformly distributed in some field. A statistician wants to
make inference about the number n on the basis of number of
animals captured by successively placed traps. It is sup-
posed that the probability for the i~th trap to capture one
animal is known to the statistician and is Py, 0 < p; < 1, i
=1, ..., m, (in the simplest case p; is the relative area
of the i-th trap).-If ©; represents the number of animals in
the i-th trap (i = 1, ..., m) and the animals are captured

independently, then the joint distribution of the random

variables Xir =ees X has form
" “1 “2 n-izlmi
R COERNT Py (Pydy) “eea(Qqeedpy)

: ?
| (e~ Y
iElmi.(n wl).
i=1



m
The statistic Z X; is sufficient for parameter n. It

1=1
has binomial distribution with parameter n and
m o
Pp =1~ T (l-pi). Thus §jx1 can be used to estimate n.

i=]1 1w1

We give the following example: Suppose that the chief
of a police center wishes to estimate the total number of
crimes in a certain locality. Suppose further that monthly
of total reported crimes received at the center arises with
a binomial probability p. Then a count ¢ the number of
reported crimes received during a month could be used to

cast light on the total number of crimes.

1.3. Review of the Literature.

The standard estimation problem associéted with a
binomial distribution, with probability function f(&,p) =
[2] p° (1-p)T®, £ =0, 1, ..., n is that of estimating p. a
much harder and less studied problem is that of estimating
n. Feldman and Fox (1968) discussed the estimation of the
parameter n in the binomial distribution when the other
Lroeees X

from b(n,p), they derived the Maximum Likelihood Estimator

parameter p is known. Based on a random sample, X

e
ny and they showed that it is consistent in a relative sense

N
and asymptotically normal. They gave bounds on np which is:

mw L
— < n = i=%

1 L

1-q



Also, they defined a new random variable ¥, = xi/q,
which is, for large, n approximately normal (i.e., N{(u,u),
where ¢ = np/q). Using Y. they examined three estimators for

M

i. Minimum variance unbiased estimator (MVUE) of g which
Z]”2 Im/z

,\ (/o2
is equal to u; = {ﬁ I/a-1 [/E]

"I, is the modified Bessel function of type I.

m

2

where 7 = E: Yi'
i=1

A
ii. The maximum likelihood estimator (MLE) which is equal
N z 1Y 1 : -
m 4 2

iii. The usual estimator of i, which is equal to 33 = Y,

' A A
From these estimators; My ﬁz and gy they obtained
respectively three estimators of n in terms of the original

random variables,

noya o /nix
A — E Xz/m Im/2 &. j_-oll
ny, = 5 i

ol /o)
1= 9 mzxﬁ

1=1




Zx?
Fa¥ 1= i L . ~ Fal ~
and n, = ————, These estimators, My My and o, were shown

3 mg
to be asymptotically equivalent.

Draper and Guttman (1971}, gave a Bayesian treatment of
the problem both when p is known and when p is unknown. For

known p, they proposed a uniform prior of n on the set {1,

-2, +.., N}, {po(n) = 1/N, n = 1, ..., N) and they derived
the posterior distribution for n which is given by n(n|«,p)
m nl :

@ (1-p)™ po(n) T ———— Xy S ns N where X, ..., X_

i=1 (n—mi)l

is a random sample from b(n,p) and x(m) is the order statis-

tics of « « . They used the mode of posterior

l'r ...r m

distribution as an estimate of n also, they claimed that the
posterior distribution can be examined to cast light on the
precision of the estimate. For p unknown, they assumed that

n and p are independent and they proposed the following

. vyl v,-l
prior: gs{n,p) = py(n) hy(p), where h,(p) « p (1-p) '

0 <p<1l, vy, Vv, > 0. They derived the joint posterior of p
and n and they integrate p out from
t-v. -1 mn-t+v -1 m nt

L (1-p) 2 Po(n) [ ~———— where

n(n,ple) = p _ .
i=L (n-mi).

m

t. = E: €;, to get the marginal distribution for n and as in

i=1
the previous case, they used the mode as an estimate of n.

They provided two éxamples for the two cases. For p known



they take p = 0.8, N = 15, « = 10 they observed that the
posterior distribution of n is essentially unchanged to
three decimal places for N = 21 and the mode is at n = 12,
For unknown p they assume that p has uniform prior distribu-
Ition and obtain results that are considerably different. As
N increases the mode of their peosterior remains the same at

n = 10.

chosh and Meeden (1975), showed that the estimator T(X)
= X/p, where X ~ b(n,p) with known p € (0,1) and n is an.
unknown parameter contained in the set N = (0,1,...}, is
admiseible under gquadratic loss function. Rukhin (1975),
made some statistical inference about the parameter n of the
binomial distribution with known p. He showed that the esti-
mator T(X) = X/p is (i) a variant of the maximum likelihood-
estimator, (ii) the only unbiased estimator of n, (iii)

minimax with respect to the weighted squared error loss

((8(x)-n)?
for n =z 1
n
L(8(x),n} = <« , A >0
282 (x) n =0

Blumenthal and Dahiya (1981), extended the results of
Feldman and Fox (1968) to cover some additional cases and
show how they may be applied to a goodness-of-fit test, also

they considered the problem of zero-~truncated observations.



Fal e R
Also, they compared the following estimators: n n_ = X/p,

L

m 172 L m
A 1 2 . e
n, = - E: Xi/m (the estimator that minimizes the

P

1=1 _ m 1/z
2 _— A 4 i1 2 1 .
x“—statistic), n, = - |- E:-Xi + —]| - — (proposed by

m 4 2p
=1

Feldman and Fox (1968)) for small m, n, in terms of their
efficiencies. They observed that, in general, the MLE is

pfeferred.

Olikn, Petkau and Zidek (1981), discussed the estima-
tion of the parametef n in the- binomial distribution when
the other parameter p is also unknown. They considered the

MME (ﬁm) and the MLE (ﬁ of n and they showed when p is

L)
small, while n 4is large, both estimators bhecome highly
unstable {(in the sense'that a small change in one of the
observation vields a large change in the estimators). They

formulated the stabilized versions of the MME and MLE. The.

A2 2
A T¢
stabilized version of MME is no.o = max{;:z—, Smax}’ where
Y A
Kt M 1
5 if = = [l+ ]
¢ = A A

S __~u p 1
max{-—-m%——,lﬂ/ 2 ] if wy < [1+—]
o a '

10



m n

. A A2 A2
Spax — Maximum (Xl, “aey xm), = E: Xi/m, g” = E: (Xi ©m)y=/m
A i=1 i=1
1A _ .
if = > 1 + 1//, the case 1s called stable, otherwilise
o

unstable. The stabllized version of MLE is

' Fay
. u 1
n if = = [l+ ]
L ~2 e
n = '
I if 55 < [1+ ]
N v 2
m-1 .
where J = S . + u;— Vehax S(mml) is the Jakknife
estimator of n and S(m—l) is the (m-1)-th order statistics
of (Xl, ..+, X ). The simulation experiments has shown that
ﬁm,s and ﬁL,S'afe not as sensitive to small perturbations in

A M
the x«, s as ¢ .
e x,; n. an nL

carroll and Lombard (1985), considered the problem of
" estimating the parameter n based on independent random sam-—

ple (X Xm) from a binomial distribution with unknown

l! .l.'
parameters n and p. They took a beta prior distribution for

p with parameters «, B > 0 and they integrated the product
. : . " ((ny % AT

of the likelihood function L{n,plz) = T[T [w_]p (1-p) '

i=1\ F

n = mf " and’ the prior probability density function of p,

m) _
over p to obtain the beta-binomial likelihood for n.

11



mnta+tb
m
+ P,
a .Z i
1=1

m
L(I‘llil_:.) = [ T [gi]]x[(mn+a+b+l)
i=1

The Carroll-Lombard estimator [CLE(«,B)}] is obtained by
maximizing this beta-binomial likelihood for n. A numerical
work shows that the CLE(«,B8) 1is reasonably stable.for the

choices (a,b) = (0,0), (1,1).

casella (1986), proposed a method for assessing the
sensitivity for the MLE. Suppose that X,, ..., X be a
random sample from b{n,p), where both n and p are unknown.

The Ln-likelihood function is -

L(n,ple) = n [2] + x np + k{n-z) n(l-p)
i _

1

| P1‘1;[\4 =

they apprbximated the ¢n-likelihood function by
m m

Ea(n,p|£) = mh“(n) - 2: hl_a(n—mi) - E: &mi! + ma np
1=1 i=1
+ . m(n-x) fn{l-p)
where hd(y} = (1-a)y &y + a(y+l) n(y+l) -y, 0 = a =1 for
¢ near 1/2, Ea(n,p) is very close to &(n,p). They treat

t_(n,plz) as a likelihood function and they obtained n_, B,

the maximum likelihood estimators based on Ea(n,p|§}, where

A
Py = and ﬁa is the solution of the following equation:

Hﬂ Ed|

o

12



m

. .
[ (l-o)m (n+1) O™ [Z(n-mi)/mn]
i=1 _
in = W = 0
k m (nﬂwi)“ 1| (n—mi+l)1"a

i=1 i=1

They considered the problem to be stable if ﬁa was not

overly sensitive to changes in a, for values of o near 1/2.

sadoghi-alvandi (1986), proved that if X ~ b(n,p) with

p known, p € (0,1) and unknown, n € {1, 2, ...}, the estima-
' (1-p) X
tor T(0) = - , MX) = —, ¥ =1, 2, ... 1ls admissible
pltnp - p
under quadratic loss, and the only admissible estimator for
p = 1/2. Also he proved that the natural estimator T(0) = 1,
X
™X) = —, X =1, 2, ... is inadmissible estimator under
Y

gquadratic loss.

Kahn (1987), showed that, if n is large, then the prior
distribution for n alone determines which moments of the
posterior distribution exist, that is, if Xl, ceer X is a
random sample from b(n,p) where both n and p are unknown and

consider priors on n and p that are factorable and can be

written as f{(n) g(p), further, let g(p) be a beta density

with parameters a and b. The posterior density on n given «

after integrate out p is

13



M(mn-t+b) T I"(n+l)
n(n|e) « ——— | ——— , for.n = € )
C'(mn+a+b) i=1 F(n-mi+1)
m
where t = ) ;. Then for some positive constant C and all £
i=1
such that f(n) > 0 and for all sufficlently laxge n,
w(n|x)
lim — = C,

n—w f(n}/na

Hamedani and Walter (1988); considered the Bayesian
approach for estimating the parameter n when p is known and
when p is unknown. For p known, they took a Poisson prior of
n and they obtained the posﬁerior distribution function of n
and they used the mean of the posterior distribution as an
estimate of n. For p unknown, they suggest a beta prior for
p and they obtained the posterior distribution function and
ag in the previous caée, they used the mean of the posterior
distribution as an estimate of n. They used the examples
that introduced by Draper and Gutiman (1971) and they showed
that the assumption of improper priors in both p and n leads

to implausible results.

Gunel and Chilke (1989), considered the problem of
estimating the parameter n based on a random sanple of size
m from a binomial distribution with unknown parameters n, p,
using a Bayesian approach for estimating n. They took a con-

tinuous pfior for n (i.e., n ~ G(u+B,8)) and a beta prior

14



distribution as an estimate of n. They observed that the
mean of the posterior distribution proposed a stable estima-

i

a3
tor and dominates n,: np: 5 and CLE(«,B) in terms of the

mean squared error for (o,B) = (L,1), (2,2).

sadoghi-Alvandi (1992), showed that if X ~ b(n,p) with
known p and unknown, n € {0, 1, ...} the linear estimator n
= oX+d relative to the linex loss function (L(A) = b[eaﬂ -
aA - 1], where A is the estimation error and b > 0, a # 0,
are the parameters of the loss function) is inadmissible for
¢ < 1and & = 0 and the estimator X+d is admissible for 4 =z
0. Also, he showed that the admissibility of the usual
estimator ﬁ = x/p depends on the sign of the shape parameter
a, if a < 0, then x/p 'is admissible, otherwise, 1t is

inadmissible.

15



CHAPTER TWO

MOMENT GENERATING FUNCTION BASED ESTIMATORS

2.1. Introduction

In this chapter, we study the behavior of the moment.
generating function based estimator for the parameter n of
the binomial distribution b(n,p). We use a random sample of
size m, and we discuss the cases p known and p unknown

separately. For p known we derive the MGF based estimator

A
n
m,t

we study its asymptotic behavior, as either m ~— w or £t —

and we discuss some properties of this estimator. Also,

0. Also, we make comparisons among the various estimators;

-~ ~ Pl
the estimator based on MGF N g the MLE N, and MME N, for

L

small m, n.

For p unknown, our main concern is the stability of the

A Fa
estimator of n, since the MME N and the MLE np of n are

unstable in the sense that they are highly sensitive to
small perturbations, that is, an increase or decrease in an
observed success count by one can result in a drastic
change. We provide the estimator a(ﬁ,t) which is based on

MGF and we analyze the examples listed in Table (2) of

o I

M
Olkin, Petkau and Zidek (1981) who computed n_, n .., 0 and

L

A

n for some particular cases.

L:s

16



2.2. Derivation of the estimator based on moment generating

function MGF when p is known

Let X = (Xl, ey xm) be a random sample taken from
¥ ~ b(n,p), where n is the parameter of interest, n € {1, 2,

...} and p is known, 0 < p < 1.

The MGF based estiamtor for n, on the basis of the

sample X, is the solution of the eguation:

m
x.t
1
Xt iZl ©
En[e J = = i
i
.
ot
(g+pet)? = 12X ;g = 1-p
m
m
X, t
£nm L Z e 1 ]
. i&
m,t )
tn(g+pe )

This estimator may not be an integer. In this case we
define another estimator and we call it the modified MGF

. Ak
based estimator, say N o where
7

o
1 if n = 1
Ak mrt
M,t = A A _
[(pmft+.5)] 1f nm,t > 1

17



where [al] is the largest integer in a.

Theorem 2.2.1. TLet X = (Xl, chay Xm) be a random sanple

taken from binomial distribution with parameter n and known

p e (0,1L), then

N A A
i. For fixed t, p ilm nm't = n] 1. 1.e., nm,t ls stron-

gly consistent estimator of n.

ii. For fixed m, lim f e = X/p.
t-—0 !

i
iii. The estimator N, + underestimates n for t > 0 and over-

L

estimates n for t < O.

tX . tmax(xl,...,xm)
iv. For t > 0, ———p- 3N = £
n(gtpe™) - d _ in(gtpe)
N tX
and for t < 0, n = .

m,t En(q+pet)

v, For fixed m, ilm nm,t = max(Xl, “aey Xm)
tXi
Proof: (i) Fix |t| < h, let Y. = e , L =1, 2, ..., m,

then {Yi} is a sequence of 1id r.v.s by the strong law of

large number

> E(Yl)

This implies that

i8



Therefore,

m
X, t
-1 1
En[m 'Zl e ] a.s
1= > n
tn(qtpe’)
il \ -~
l.e., p[llm nm,t = n] = 1.
MN—®
-(1i) Fix m, then
' 1 mooxt
2nm Z el
. A \ i=1
1lim nm £ = lim
t—0 f t—0

Bn(q+pet)

using L’Hopitial’s rule we see that

il
X, t : Xt
¢nlm 1 Z e T ] (q+pet) Xie 3
lim 171 = lim o 171
t—0 t t—0 t X.t
Ln(g+tpe ) pe Z e
i=1

. X

Note: n = — is actually (MME).
p

19



(iii) Since g{(x) = inx is concave for x > 0 then
by Jensen’s Inequality we have
 E g(X) = g(EX)

This implies that

m
tX,
E[ En[mul Z e T ] = n P,n(q+pet)
i=1
“For t > 0, since &dq+pet).> 0, we have
m .
: X.t
En{m 1 Z e t J
E(n_,) = E 171 < n
m,t &
Ln{gtpe™)

in a similar way we can prove that

E(nm’t) = n for t < 0

{iv) For t > 0, since X; = max(xl; ceny xm), i=1, ..., m,
ul
txi t max(ml,...,mm) ‘ -1
then E: e = m e or equivalently, &n|m
i=1

tx.
e l] = t max(ml, .oy mm). Since Bn(q+pét) > 0, we have

71 s

1

t max(xl,.f.,xm}

o Il
1A

£ which is the upper bound. The lower
En(qg+pe™) £x.

m,t

bound comes from convexity of e 1 Hence t¥ = fn|m”*
m i
T tX N
e or equivalently ~———>— = n . Similarly, we can
t m,t
tn(gtpe”) !
i=1 _
prove that,
A B tX
n , s ——mm0 —, for t < 0.
m,t En(g+pe )

20



(v) Fix m, let X(l]’ c ey X(m] be the order statistics of

X, Xm. Assume there are no ties. Then

1’ ...f
m
X.t
ﬂn[m“l Z e T ]
lim n_ ., = lim 1=l
te—w T, t t—w
En{g+pe )
m
tX
En[m“l z e (l)}
= lim 1=1
t~—m

£n(q+pet]

using L‘Hopitial rule we see that

tX, .
. q+pe z X(l) (1)
lim n = lim
t—w m,t t—w £ m tX,.
(1)
pe Z e
i=1
m-1
' t( ) )
(1) (m)
Zx(i) © % (m)
= lin m—l » )
t—mw X,.. = X
Y e (1) (m)* , 4
\ i=1

Since x(i) = X(m), for i =1, ..., m=1 we have

N .
lim nm't = X(m) which is the desired result.

- 21
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2.3. The asymptotic behavior of the MGF based estimator (n )

In this section, we study the asymptotic behavior of
nm,t’
that of n_, the estimator obtained by the MME.

as either m —— » or t —— 0, and we compare it with

It can be easily shown that the limiting distribution
A L] +
of v m [nmun), as m —— ® is normal with mean 0 and

variance ng/p.

Before presenting our next theorem, we recall two
results: e
a. Let X be a r.v with binomial distribution b{n,p). Then,

for [t| < h,

tX 2t.n t,2n 2
var(e ™) = {gtpe” )" - (gtpe’ )" = oi(n)
b. Let {Yj}ﬁﬂl be a sequence of iid r.v.s with E(Yl) = 0 and
Var(Yl) = 02, then by Berry-Esseen’s theorem, (S. K. Bar-

Lev, N. Barken and N. A. Langberg, 1993)
m
-1/2 -1 -1/2 -3 3
plm () }Z Yjsm - {x) =Cm o E|Yl| , ¥ XeR (2.3.1)
J=1

where & is the cummulative standard normal distribution and

C is some constant.

Theorem 2.3.1. Let X = (X,, +..s X;) be a random sample

taken from binomial distribution with parameter n and known

22



p e {0,1) and denote Lm,t = v m (nm’t—n). Then
(i) For fixed t, lim p(Lm £ = Yy = p[Lt = x], ¥ x € R, where
n-—w !

Lt is normal random variable with mean 0 and vairance

t
(q+pe®®)" = (g+pet)?"

(q+pe™)?M (tn(q+pet))?

ni(n) =

(ii) lim 1im p(L £ = x) = p[L = ], ¥V X € R, where L is a
t—0 mow o,

normal random variable with mean zero and variance ng/p.

(iii) lim 1lim p(L <= %) = p[L =x], ¥x < R.
m,t
m—m t—0

Proof:

(1) plv m (ﬁm £Tn) = x] =pivm 151 -n| =x

En(q+pet)

- &uq+pet)“] = « tn(g+pe®)

1
m Xt
E e x
= pitn | m™t 221 < tn(q+pe’)
(g+pe™)" m
oyt
Zel 1/2
-1 1=] (c/m"")
= plm = (gtpe )
t
(qt+pe”)™

23



m
_ X, t _ (/M)
= p|n IE: [e * -(q+pet)“]£(q+pet)n[(q+pet) ~1]
i=1
Xt (&/m*?)
> [e ' —(q+pet)“] m1/2(q+pet)“[(q+pet1 -l]
_ ~1/2i=1 : '
_p m =
Gt(n) Gt(n)
Denote
(x/m"?)
ml/2(q+pet)n[(q+pet) -l]
Hy (@) = (2.3.2)
o (n)
- Exy t.n
Apply (2.3.1) with ¥; = e I~ (g+pe)?, 3 =1, 2, ... leads
to |
Xt
» [e ' —(q+pet)n]
plm /2251 = Hp ()| - e(Hp (@)
e (n)
-1/2 Xt 3
=Cmnm Ug3fn) Eje Lo (q+pet)n YV v R (2.3.3)

The term on the right-hand side of (2.3.3) converges to 0 as

m —— o. This implies that,

24



1im p[Vr;ﬁ[A ~n] < m] = lim @[Hm’t(x)].

n
m—seo _ m,t M—-00
Now
X/ml‘m
t
3 (q+pet}n[(q+pe ) - 1]
lim Hm,t(X) = Lim m

e T oy (1)

Using L‘Hopitial rule we see that

tn(gq+pe®) (grpe®)M
lim H . (®) =% (2.3.4)

Mm—e d
o (n)

Hence
(q+pe®)? tn(gpet)a

V/[;§+pe2t)“ ~ (qtpe™)?n

whigh ends the proof of part (i).

lim p[v I (ﬁn-n) < m] = @

m—x

(ii) Taking limits, as t —— 0, in (2.3.4), yields

1
(en(g+pe®))? (q+pe®)?? |3
t—s0 (q+pe2t)n-{q+pet)zn

lim lim Hm t(m} = lim
t—0 m—w !

by using L,‘Hopital rule twice we see that

25



Taking limits in (2.3.3) as m —> «» and then as t — 0 and

using (2.3.4), implies

lim lim p[v m [ﬁ t—n] < m] = lim lim @[Hm t(m)]
t—0 m—ow m.t t—0 m—wo N 7

= *ﬁ[m vV p/ng ] = p[L = «].

(iii) Let A, y denote the upper bound in (2.3.3). We will

show that
lim lim Ap g = 0 (2.3.5)
m—e t—30 !
and
1
. ) P13
lim 1im Hm t(m} = {——} (2.3.6)
m—ew t—0 4 ng

"The relations (2.3.5) and (2.3.6) would imply

lim 1lim p[v n [ﬁ t—n] = m] = 1im 1lim @[Hm t(m)]
m—w t—0 m, m—w t—0 d

= d’[x v p/ngq ] = p[L = «].

Now to show (2.3.5}. By an application of Liapounov’s

inecquality (E|’:{1[r)l/r =< (E|Y1]S)]‘/E"Jr 0 <r < s < », for
Xit t.n
the r.v ¥, = e - (g+pe”) with r = 3 and s = 4 we have
3/4
Xt t.n.,4
: C[E[e L7 =(gq+pe™) ') ] Bm,t
A = = ; say
m,t _ 3/2
n'/2[ (arpe®®) " (qtpe®) "] Cp ¢
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x.t

Expand (e L tyn,4

~-(g+pe )")* and taking the expectation then by

B 4/3
using LfHopital’s rule twice, we find that lim [—ELE] = 0

t—CIC

m,LT
the desired result.
To show (2.3.6), taking limits as t —— 0, in (2.3.2)

and using L’Hopital rules twice results in

b}

' j
iim H (x} = « {——}
t—0 m,t ng

and hence (2.3.6) follows, which completes the proof.

The relative asymptotic efficiency, defined by
ng/p

nﬁ(n)

efft(n) = , of the Hm with respect to ﬁm is summa-

.t

rized in Table 2.A for t = 0.05, n =3, 6, 9, 12, 15 and p =

0.25, 0.5, 0.75. It can be seen that the relative asymptotic

efficiency is always greater than one.

Table 2.A
Values of efft(n) where t = 0.05
n
p 3 6 9 12 15
.25 1.011959 1.011341  1.010596 1.006874  1.009119
.5 1.025066 1.024135 1.023188  1.022227 1.021268
.75 1.237803  1.037101  1.036423  1.035702 1.034984
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Fa
2.4 Derivation of the maximum likelihood estimator (nL)

Let X = (X, ey X ) be a random sample from b(n,p),

where p is known. Let L(n) be the likelihood of n given X

€, (i =1, ..., m) and let A(n) = L(n)/L(n-1). The MLE n

is an integer solution of

Aa(n) = 1L and A(n+l) < 1 for n = max(xl, . s 9 xm). (2.4.1)

1

But, A{n) =-(nq)m (n—mi)” ;, for n = max(ml,...,mm) where

f= =

1
g = l-p. Thus, (2.4.1) becomes

i

m
(n-mi) 1 (nq)m and -E

1 1=1

1

3=

m
(n+1-mi) > [(n+1)q] (2.4.2)

Now ignore the integer character of ﬁL and conslider the
equation obtained by replacing the inequality by equality in

the first part of (2.4.1), set z = 1/n, we have

(1-e,2z) = q® (2.4.3)

n= =

i=1

Let p(z) be the left side of (2.4.3), then p(0) = 1 and
1l

= 0, and p 1s strictly decreasing in z

p[max(m ...,mm)]

1!

and convex on [0, 1/max(ml,...,mm)]. Hence there is a unique
A
-root z of (2.4.3) in this interval. So that there is a

A~ A
unigue root of (2.4.2}. This root is n = [1/z], where [a] is

28



the largest integer in a. Also, from convexity of p on

A .
[0,1/max(ml,...,mm)] bounds on z are obtainable. These are

_ Tt
1l-q l—qm

max(xl,...,xm)

or equivalently,

This description of the MLE of n was found by Feldman
and Fox (1968). It should be noted that the MLE is not
uhique. For example, suppose n =.2, p = 1/2 and let (Xl,xz}
be a random sanple of size 2, then the sample space is

s = {(0,0),<o,1),co,z);cl,z),(2,1),c1§1),(z,2),<1,0),(z,0)}
o 1.2n
= , X, = = R n — ; = ‘ .
L(n|X1 @y 2 mz) [ml] [mz] [2] n max(ml mz)

For the sample points

(0,0) the MLE is n = 1
(0,1) the MLE is n = 1
(0,2) the MLE is n = 2
(1,1) => [4/3] =n =([8/3] = n =1, 2

because L(L|1,1) = [i] [i] [E]Z = 1/4

s = () (1) O

1./4
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s0 we have two MLE.

3

(2,2) = [8/3] =n = [16/3], n =2, 3, 4, 5

e = (3 ) ()
om - () ) B

L(4|2,2) ; {g] {g] [i}s = 9/64

1/16

9/64

5 (5 14 10
L(5]2,2) = [ ] ( ] [—] = 6.25/64
2 2
2 .
) .
So, the MLE is at n = 3 or 4.
In numerical simulation for the MLE if we have more then one
we take the largest one. To calculate the exact distribution
of the MLE it is wvery difficult and take long tinme. So, we
used simulation method to approximate the mean square error
and bias for it. It observed that numerical simulation is

very close to the exact. (see Table 2.1 for exact) and

{Table 2.2 for simulation).

We describe the procedure that we have used to
calculate the MSE and Bias of BL and ﬁm!t.
1. Fix n, p, t, m.
2. Generate m observations from b(n,p), (ml, vony mm), say
3. Substitute the observations obtained in step 2 in the

following equation

30



4'0

5.

6.

En(q+pet)
Tf all observations in step 2 are zero, we put ﬁL = 1,
If at least one cobservation in step (2) not equal zero we |

substitue these observations in the following bounds

m
i-Z—:J.mi

L=

mgx(mi)
1=<i=n
[ 1-q" ]

Order the values obtained in (5) and substitute these
values in the 1likelihood fuﬁction and the maximum
likelihood estimator is the wvalue say BL with large
probability.
If we have more than one value that maximize likelihood
we take the largest one.
To approximate the mean square error and the bias of ﬁm &

r

and SL we repeat steps (2-8) 10000 times.

10000

Y (puectr-n) /20000,

i=1

MSE(n

i

m,t)

10000

E: nm’t(l)///loooo -n

i=1

R ~
Blas{nm't)

10000

E: [BL(i)—n]z///lodoo

i=1

MSE(n; )

B!

31



10000
. ~
Blas(nL) =

i=1

Table 2.1

Exact MSE and bias of nL, nm,t

E: HL(i)///loooo -n

£t =0.05, p=1/2, n'=3
M A Fat . Y . Py
SE(nL) MSE(nm't) blas(nm’t) blas(nL) efft(n)
.9804687 . .9729873  -.012353 -.167735 1.0045917
.5167691 .4882278 —=.,006164 ~.130829 1.058459
.3152752 .327507 -.004848 ~.058835 0,962626517
Table 2.2
Simulated M3E and bias of ﬁ ; A
L m,t
t =0.05, p=1/2, n =3
. A bias (n bias(n £F
MSE(nL) MSE(nm,t) 1as(nm’t) 1as(nL) e t(n}
9787376 966165 -. 014293 -.173263 1.009908
5148777 .4843701  -.005648 -.131881 1.062984
.3221941 .3252513 -.005568 -.054012 0.9906005
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2.5 Numerical comparisons

In this section, we make comparisons among the various
_estimators; the estimator based on the MGF ﬁm,t' MLE RL and
the MME ﬁm for small m,n. 10000 b(n,p) samples of size m
were simulated for m,n = 3, 9, 15, t = -1, 0.05, 1 and p =
0.05, 0.25, 0.5, 0.75, 0.95. The efficiency of the estimator
31 with respect to the estimator 52 is defined by eff =
~MSE(§2)/MSE(§1), algso the absolute ratio of the bias of 31
with respect to 82 is defined by R = |bias(§2)/bias(§l)|. We
report the efficiency of ﬁm,t with respect to HL' in Tables
(2.3, 2.5, 2.7, 2.9). Tables't2;4,l2.6, 2.8, 2.10) present
the absolute ratio of bias of ﬁm,t with respect to ﬁL‘
Tables (2.11-2.14) present the efficiency of am,t with res-
pect to ﬁm. Tables (2.15, 2.17, 2.19) present the efficiency
of ﬁ;,t with respect to HL.'Tables (2.16, 2.18, 2.20) pre-
sent the abolute ratio of bias of ﬁz,t

*

Tables (2.21-2.23) present the efficiency of ﬁm & with res-
r

with respect to HL'

pect to the ﬁL'
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Table 2.3

A -
The efficiency of n. ¢ with respect to ng [t = 2].
'

n
m P 3 9 15
.05 1,989871 1.595142 1.264394
.025 1.421788 0.723858 0.469198 -
3 .5 1.272793 0.660346 0.416110
.75 1.324184 0.895239 0.613240
.95 0.373053 0.592724 1.036242
.05 1.281042 1.067459 0.769975
.25 1.119503 .0.552734 0.294994
0 .B 1.450276 0.591168 0.310664
.75 0.150738 1.0b9167 0.636965
.95 0.000031 0,000921 0.139397
.05 1.279114 0.851484 0.577984
.25 1.227665 0.423303 0.214024
15 5 1.357525 0.535878 0.287554
.75 0.004980 0.0189875 0.714511
.95 0.000017 0.000820 0.00459
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Table 2.4

~

The absolute ratio of bias of ﬁm!t w.r.t ny [t = 2]
n
p 3 9 15
.05 0.395413 0.10953¢6 0.103693
.25 0.197019 0.004028 0.001996
3 «D 0.484630 0.084990 0.039105
.85 0.636210 0.465930 0.176206
.95 0.755923 0.972863 1.470802
.05 0.250907 0.035184 0.022835
.25 0.118323 0.00229¢6 0.001221
9 «D 0.052229 0.082650 0.007888
.75 0.170706 G.316367 0.109144
.95 0.013039 0.015384 0,158771
.05 0.340416 0.005114 0.004049
.25 0.097128 0.002021 0.036253
15 .5 0.209021 0.034236 0.0176200
.75 0.009951 0.048423 0.017220
.95 0.140873 0.024221 0.013961
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Table 2.5

A
The efficiency of ﬁm £ with respect to np [t =117.
: r

n

mp 3 9 15
.05 1.269864 1.370430 0,842082
.25 1.299266 1.04053 0.818082
3 .5 1.279126 0.923317 0.740842
.75 1.228654 1.09683 0.909233
.95 0-100076 0.537870 0.625634
.05 0.943609 0.850185 0.659413
.25 1.139656 0.838218 0.655401
9 .5 -1.293633 0.882374 0.649167
.75 0.135088 1.265701 0.951527
.95 0.00039 0.00699 0.020652
.05 1..022702 0.906629 0.758253
.25 1.235479 0.774747 0.567122
15 .5 1.176499 0.896688 0.611030
.75 0.016361 1.203924 1.044713
.95 0.000021 0.00043 0.003890
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Table 2.6

Fa3
The absolute ratioc of the bias of N w.r.t ﬁL [t = 1]

’

n
il P 3 9 15
.05 0.825983 0.386636 0.1127580
.25 0.401885 0.0486201 0.062161
3.5 0.786681 0.159047 0.096813
.75 1.449943 0.768646 0.283272
.95 0.229683 0.770135 0.852212
.05 0.547785 0.113836 0.109489
.25 0.234830 0.048091 0.037488
9 .5 0.889333 0.121183 0.06960
.75 0.288125 0.754149 0.244279
.95 0.020526 0.003987 0.023076
.05 0.245892 0.141942 0.1621061
.25 0.169008 0.056021 0.047979
15 .5 0.185700 0.127661 0.071247
.75 0.042788 0.0660421 0.263962
.95 3.004432 0.045653 0.010257
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Table 2.7

The efficiency Oflﬁm,t with respect to GL [t = 0.05].
n
mp 3 9 15

.05 0.9851801 0.982903 0.9331.924

.25 1.012898 1.006888 1.013526
3.5 1.009908 1.005548 1.025901
.75 0.876528 1.023675 1.052734

.95 0.060164 0.338697 0.681608

.05 0.961623 1.013964 1.247751

.25 0.995214 1.02137 1.024149

9 .5 0.990601 1.038449 1.038569
.75 0.067519 1.068099 1.079486

.95 0.008132 0.00988 0.095657

.05 0.983558 1.002982 1.021993

.25 1.107644 1.046914 1.025015

15 .5 0.857825 1.118694 1.075365
.75 0.006197 0.983293 1.135589

.95 0.000739 0.00098 0.001465
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Table 2.8

~ i
The absolute ratio of the bias of n w.r.t ng [t = 0.05}

!

n
m 3 9 15
.05 5.472289 12.48657 1.040615
.26 20.5223 1.590919 1.379380
3 .5 12.121913 3.79622 3.325263
.75 11.683667 24,108563 10.291247
.95 0.564672 5.894948 10.49824
.05 1.95555 1.258899 1.261764
.25 23.496808 2.287466 1.88495
9 .5 9.700848 3.418789 2.75983%
,75 1.03789 19.445216 3.877796
.95 0.429964 1.191996 4.192691
.05 3.388691 1.494286 1.150074
.25 2.464699 2.20457 16.01.0413
15 .5 5.574175 2.42572 1.758977
.75 0.97979 ' 3.339062 5.00366
.95 0.280992 1.494671L 3.982758
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Table 2.9

Pl PN
The efficlency of n . with respect to n; [t = -1].

M p 9 15
.05 0.657081 0.604859 0.570910
.25 0.558287 0.418631 0.343407
3 .5 0.470749 0.353148 0.278980
.75 0.392552 0.364635 0.309866
.95 0.010267 0.1173909 0.3277608
.05 0.752504 0.747433 0.681547
.25 0.657893 0.471071 0.359412
9 .5 - 0.499291 0.331505 0.249526
.75 0.027179 0.298749 0.238082
.95 0.000017 0.000316 0.011.584
.05 0.85737 0.787521 0.765073
.25 0.761280 0.511921 0.363899
15 .5 0.4252617 0.3341568 0.233327
.75 0.001217 0.245976 0.235467
.95 0.000017 0.000038 0.000417




Table 2.10

~

Fal
The absolute ratio of bias of N, ¢ w.r.t n. [t = -1]
: 7
m P 3 9 15

.05 0.526609 0.398023 0.069602
+ 25 0.393462 0.0854634 0.051893s

3 .5 0.480341 0.0199609 0.063781
.75 0.568036 0.295881 0.117089

.95 0.014651 0.208186 0.639248

.05 0.343795 0.505996 0.581531
.25 0.36009 0.0466817 0.0423459

9 ] 0.510737 0.0122360 0.039792
.75 0.087981 0.201624 0.048263

.9b 0.005380 0.011577 0.168258

.05 0.985566 0.252599 0.209373

.25 0.160373 0.101376 0.070041

15 .5 0.140424 0.0036401 0.021807
75 0.005454 0.184924 0.074518

.95 0.010048 0.023887 0.012412




Table 2.11

The efficiency of n_ . with respect to n_ [t = 2].

n
m P 3 9 15
.05 1.35274 1.178737 0.87737
.25 1.431075 0.746819 0.454183
3 .5 1.266861 0.636938 0.396850
.75 1.694005 0.935667 0.624440
.95 2.801843 1.279732 0.597921
.05 1.550167 1.087864 0.741317
.25 1.106577 0.523834 0.291600
9 .5 1.518651 0.543441 0.321664
.75 1.925708 0.970797 0.673763
.95 2.503138 1.579317 0.53433
.05 1.338856 0.786323 0.61.8060
.25 1.026745 0.447554 0.238818
15 .5 1.693533 0.532610 0.284204
.75 1.219808 0.185311 0.596574
.95 2.31463 1.81828 0.724325

42



Table 2.12

oS ~
The efficiency of n. 4 with respect to n [t = 1].
: !

m 3 9 15
.05 1.368778 1.481109 0.300324
.25 1.340084 1.038133 0.823879
3.5 1.272209 0.935661 0.751457
.75 1.432502 1.077087 0.880930
.95 1.751932 1.631943 0.472134
.05 1.73744 1.073567 0.709085
.25 1.161101 0.813796 0.641130
9 .5 1.366343 0.842337 0.645624
.75 1.706657 1.208568 0.897665
.95 1.347099 1.023588 0.775731
.05 1.070953 0.8675864 0.8569815
.25 1.159534 0.745183 0.558807
15 .5 1.406595 0.839729 0.580976
.75 1.817863 1.278712 0.928415
.95 1.260658 0.998493 0.75652




Table 2.13

The efficiency of ﬁm,t with respect to n_ [t = 0.05].
n
5 p 3 9 1%

.05 1.026052 1.041879 1.014246

.25 1.05418 1.03875 1.01078

3 .5 1.03502 1.025117 1.016897
.75 1.024822 1.019362 1.031354

.95 - - 15061593 1.025318 1.028297

.05 1.046351 1.006781 1.000981

.25 1.023957 1.005703 1.006831

9 .5 1.024849 1.019455 1.017359
.75 1.013798 1.043497 1.017170

.95 1.00537 1.076419 1.054783

.05 1.005474 1.058904 1.075064

.25 1.006336 1.003908 1.010101

15 .5 1.027322 1.045187 1.03867
.75 1.032886 1.047713 1.016765
+95 0.979736 1.073113 0.9908763
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Table 2.14

The efficiency of ﬁm,t with respect to Hm [t = ~1].
n
m P 3 9 15
.05 0.748034 0.638175 0.599662
.25 0.5910668 0.423564 0.346461
3 .5 0.485880 0.359082 0.279608
.75 0.475301 0.3692396 0.297316
.95 0.571936 0.498410 0.446502
.05 0.827078 0.773413 0.772995
.25 0.689451 0.460698 0.356935
9 .5 0.531904 0.323947 0.244372
.75 0.419431 0.296031 0.228841
.95 0.395580 0.336631  0.325651
.05 0.935735 0.818368 0.801056
.25 0.730600 0.501444 0.355690
15 .5 0.25522 0.102064 0.216920
.75 0.405639 0.260442 0.206015
.95 0.357410 0.337048 0.276999
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Table 2.15

Ak , ~
The efficiency of the n with respect to n, [t = 2]
!

n

" p 3 9 15
.25 1.70475 0.675629 0.421447
3.5 0.974921 0.658717 0.400237
.75 1.388537 0.720264 0.564304
.25 1.013225 0.466412 0.280216
g .5 1.0095 0.455903 0.334924
.75  0.304527 0.848754 0.680597
.25 0.915272 0.432549 0.231687
15 .5 1.118302 0.482368 0.282226
.75 0.076923 0.748601 0.622032
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Table 2.16

A e A
The aboluste ratio of the bias of N e w.r.t n, [t = 2]

f

n

n p 3 9 15
.25 0.182088 0.032146 0.021109
3 .5 0.557322 0.078692 0.043493
.75 0.596626 0.530978 0.014688
.25 0.073160 0.024005 0.021129
9 .5 0.407792 0.063918 0.005570
.75 0.290649 0.242811 0.116868
.25 0.066026 0.024231 0.000621
15 .5 0.068190 0.012228 0.022519
.75 0.097339 0.199757 0.046082
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Table 2.17

The efficiency of ﬁ; . with respect to Ay [t = 0.05]
[
n

m P 3 9 15
.25 1.061253 1.019131 1.010989
3 .5 0.938007 0.9622576 1.027417
.75 ' 0.549461 0.969741 1.022429
.25 0.920031 1.001176 1.004161
9 .5 0.711278 0.964706 0.994063
.75 0.062942 0.876531 0.915467
.25 0.985438 0.990395 1.000318
15 .5 0.728820 0.965765 0.987995
.75 0.007605 0.752461 0.927575
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Table 2.18

A sl A
The absolute ratio of the bias ne. ok w.r.t np [t = 0.05]

!

.25  0.831000 1.800860 1.370550
3 .5 37.424000 5.165000 2.657670
.75 0.904170 5.381400 4.592300
.25 0.649000- 1.694830 1.390710
9 .5 12.081000 11.329900 2.30314
.75 0.552550 2.612400 11.094500
.25 0.240060 3.310640 1.152700
15 .5 2.108000 18.102200 1.626580
.75 0.035280 ' 7.1.33700 3.956200
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Table 2.19

A , A
The efficiency of the No ¢ with respect to np [E = =1]
f
n

™ D 3 9 15
.25 0.349863 0.373818 0.293825
3 3 0.482567 0.341241 0.273957
.75 0.349863 0.373818 0.293825
.25 0.019324 0.286070" 0.243079
9 D 0.425269 0.323523 0.243527
.75 0.0193242 0.286070 0.243079
.25 0.008379 0.231184 0.206069
15 .5 0.366985 0.312207 0.224727
.75 0.008379 0.231184 0.206069
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Table 2.20

Ak A
The aboluste ratio of the bias ng, ¢ w.r.tong [t o= -1]
¥
n

m p 3 9 15
.25 0.403518 0.064980 0.028632
3 .5 0.531490 0.106637 0.061991
7B 0.822629 0.336560 0.098027
.25 0.329222 0.086222 0.066088
9 .5 0.344678 0.100354 -0.043748
.75 0.085867 0.160238 0.093960
+ 25 0.232705 0,131970 0.026079
15 .5 0.312395 0.074568 0.042025
.75 0.004895 0.165884 0.062894
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Table 2.21

A

*
The efficiency of the gm + with respect to n, [t = 2]

.75

n

i P 3 9 15
.25 1.728536 0.675398 0.428670
3 .5 0.968492 0.653462" 0.401.246
.75 1.658352 0.712193 0.548523
.25 1.033450 0.468046 0.274840
9 5 1.032969 0.438355 0.328276
.75 1.572530 0.837549 0.63913%9
.25 0.830554 0.139599 0.229710
15 .5 1.39177 0.440586 0.267635
1.094017 0.799349 0.559198
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Table 2.22

The efficiency of the ﬁ; £ with respect to Rm [t = 0.05]
!
n
m p 3 9 15
.25 1.082536 1.025549 1.004157
3 .5 0.953901 0.985101 1.022615
.75 0.665770 0.945506 0.991580
.25 0.948555 0.977606 0.976089
s 5 0.728633 0.948738 0.970057
.75 0.985016 0.862916 0.859995
.25' 0.910055 0.976927 0.953008
15 3 0.851405 0.892987 0.9485331
.75 1.267421 0.78082 0.821252
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Table 2.23

B . A% . A
The efficiency of the n, + With respect to n, [t ==1]
!
n

m P 3 9 15
.25 0.570434 0.407678 0.341646
3 .5 0.488015 0.346704 0.277185
.75 0.406346 0.376669 0.288444
.25 0.657239 0.467231 0.357964
9 .3 0.446343 0.317668 0.238736
.75 0.315755 0.277771 0.229905
.25 0.626678 0.486458 0.353678
15 .5 0.435843 0.296588 0.212220
.75 0.279287 0.240814 0.188921
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2.6. Results of numerical comparison

1.

Tables (2.3, 2.5, 2.7, 2.9) present the efficiency of

ﬁm,t with respect to HL for £t = -1, 0.05, 1 and 2.

a. For t = 1, the tabulated results suggest that, high
efficiency (dlose to 1) is achieved for values of n =
3, 9, m = 3 and p = 0.05, 0.25, 0.5, 0.75,

b. For t = 0.05, high efficiency (close to 1) is achieved
fof values of n = 15, m < 15 and p = 0.05, 0.25, 0.5,
0.75.

¢, For £t = -1, the efficiency is always less than 1 for
all values“of'n{ m and p.

d. For £t = 2, the tabulated results suggest that, thigh
efficiency (close to 1) is achieved for n = 3, 9, m =
3, 9, 15 and p = 0.05, also for n =3, m = 3, 9 , 15
and p = 0.25, 0.5. |

Tables (2.4, 2.6, 2.8, 2.10) present the absolute ratio

of hias of am,t with respect to SL for values of t = -1,

0.05, 1, 2.

a. For t = -1, the ratio of the absolute bias is less
than 1, for ail m, n and p.

b. For t = 0.05, the ratio of the absolute bhias is

greater than 1, for all m, n and p.

¢. For t = 1, the ratio of the absolute bias is less than
1 for nearly almost m, n and p.

d. For t = 2, the ratio of the absolute bias is less than

1l for all m, n and p.
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3.

Tables 2.11-2.14, present the efficiency of ﬁm,t: with

respect to Rm for £t = -1, 0.05, 1, 2.

a. For t = 1, the tabulated results suggest that high
efficiency (close to 1) is achieved for values of n =
9, m = 15 and p = 0.0%, 0.25, 0.5, 0.75, 0.95.

b. For t = 0.05, high efficiency (close to 1) is achieved
for values of n = 15, m = 15 and p = 0.05, 0.25, 0.5,
0.75, 0.95. |

¢, For t = -1, the efficiency is less than 1 for all m, n

and p.
d. Por t = 2, high efficiency (close to 1) is -achieved

for n =3, m=3, 9, 15 and p = 0.05, 0.25, 0.5, 0.75,
0.95 also forn =9, m =3, 9 and p = 0.05, 0.95.
Aok

Tables 2.15, 2.17, 2.19, present the efficiency of Ny
I

with respect to*ﬁ for t = -1, 0.05, 2.

L i

a. For £ = 0.05, the tabulated results suggest that high
efficiency (close to 1) is achieved for values of n >
6, m = 15 and p = 0.25, 0.5,

b. For t = -1, the efficiency is always less than 1, for
all m, n aﬁd p = 0.25, 0.5, 0.75.

¢. For £t = 2, the efficiency (close to 1) for n = 3, m =
15 and p = 0.25, 0.5.

Tables 2.16, 2.18, 2.20, present the absclute ratioc of

bias of gi,t with respect to EL for t = -1, 0.053 2.

a. For &t = 0,05, the ratio of the absolute bias is

greater than 1, for almost all values of n = 15, m =
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15 and p = 0.25, 0.5, 0.75.

b. For t = -1, the ratic of the absolute blias is always
less than 1, for all m, n and p.

c. For £t = 2, the ratio of the absolute bias 1s always
less than 1 for all m, n and p.

6. Tables 2.21-2,23, present the efficiency of H;,t with

respect to Hm for t = fl, 0.05, 2.

a. For t = 0.05, the efficiency is less than 1, but it is
still high for m, n and p.

b. For t = -1, the efficiency 1s always less than 1 for
all m, n and p.

¢. For t = 2, high efficiency (close to 1) is achieved

for values of n =3, m = 15 and p = 0.25, 0.5, 0.75,

2.7. Derivation of the estimator based on moment generating

function when p is unknown

Let X = (xl, ceoy Xm) be a random sample from b{(n,p},
where both n and p are unknown. The MGF based estimator for
n, on the basis of the sample X = (Xl, vy Xm) is a

solution of the equations

n t. X
Z e 11
e X,y . L
En[e 1 l] - 131 (2.7.1)
m
m
Z tzxi
Xy 14 ° '
En[e ] = =1 (2.7.2)
i
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for some tl and t2.

From (1.3.1) and (1.3.2) we have

s M tl{ci »
tl Codn Z e / m
= = C , say
tz '3 m t m. \
n{g+pe ) in E e 2 1/ n
i=1 /
This implies,
€ 't
in(gtpe 7) = C d(gtpe 7)
or
t2 C tl
L [q+pe ] - [q+pe ] = 0 (2.7.3)

If a solution of (2.7.3) exists p say, then the estimator of
n is

t, @,
ell/m]

n~1=

ﬂn[
A A l

tn(q+pe’)

1

Also, we suggest the following estimators of p:
i. p=1/2.
ii. The maximum likelhood estimator of p is X/n and for

large m one can estimate n by max(xl, “uny Xm), thus 5

X

I

-

max(Xl,...,xm)

—_ A, A
111. = X/n, where n is the wvailue of L

. Fa
= X/ﬁ, where n is the value of n__ .

o> g

iv.
m:s
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2.8. Numerical work

In this section, we analyze the examples 1listed in

Table (2) of Olkin, Petkau and Zidek, (1981) who computed

el Fa A Pa¥
Do Npagr Op and N . for some cases In Tables 2.24-2.28, it
Y ~
is clear that n, and n; are highly unstable. In addition,
A P A A , ~ A
Mo.gr Dp.go n(p,t) are clearly stable, with Noegt nip,t)
—_ A
[where E) = X/ﬁ and ﬁ is the wvalue of Noss giving rather
e MM A

similar results. Also, 0p.g and n(p,t) {where p = 1/2,
i/max(xl,...,xm) or the root of the equation (2.7.3) for t =

1, 2, giving] rather similar results.
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Table 2.24

The last column present the estimator ﬁ(ﬁ,t) where

5 is the solution of eguation (2.7.3)

Py A My ~ FA
n p g sample n, No.e Ny, Np.g ni{p,1)
75 .32 5 16,18,22,25,27 102 70 99 29 28
*®
16,18,22,25,28 195 80 190 30 29
34 .57 4 14,18,20,26 507 77 504 31 27
<0 91 % 31 28
37 .17 20 4,4,4,4,5,5,5 65 25 66 11 12
5,6,6,6,6,7,9,9 154 27 159 13 13
10,10,10,11,11
48 .06 15 0,1,1,2,2,2,3,3 18 10 15 7
3,4,4,4,4,5,6 138 12 125
40 .17 12 6,7,7,7,8,8,9,9 32 26 42 21 18
9,10,11,16 61 32 79 32 19
55 .48 20 17,23,24,25,25 71 69 71 43 40
26,26,26,27,27 79 74 81 45 41
28,28,28,29,30
30,30,31,33,38
60 .24 15 11,11,12,12,13 67 49 67 24 23
13,14,16,17,17 88 53 90 28 25

1.8,18,20,20,2

2

* This is the perturbed sample obtained by adding one to the

lafgest'success count. For simplicity, the perturbed samp-

les are not displayed_in the remaining cases.
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Table 2.25

The last two columns present the estimator ﬁ(g,t)

A — A A A
where p = X/n, n is the value of n...andt=1, 2
' A A A A A A
n P m sample Ny no.s 01, Dr.g ni{p.,t)
75 .32 5 16,18,22,25,27 102 70 99 29 59 48
" .
16,18,22,25,28 195 80 190 30 68 53
34 .57 4 14,18,20,26 507 77 504 31 68 52
< Q 91 ® 32 80 60
37 .17 20 4,4,4,4,5,5,5 65 25 66 11 23 19
5,6,6,6,6,7,9 154 27 159 13 26 21
9,10,10,10,11,11
48 .06 15 0,1,1,2,2,2,3,3 18 10 15 7 8
3,4,4,4,4,5,6 135 12 125 12 11
40 .17 12 . 6,7,7,7,8%,8,9 32 26 40 21 29 25
9,9,10,11,16 6l 32 79 23 36 30
55 .48 20 17,23,24,25,25 71 69 71 43 &7 §7
26,26,26,27,27 79 74 81 45 72 61
28,28,28,29,30 '
30,30,31,33,38
60 .24 15 11,11,12,12,13 67 49 67 24 44 37
13,14,1e,17,17 88 53 90 28 4% 40
18,18,20,20,22
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Table 2.26

A A
The last two columns present the estimator n(p,t)

A A A A
where p = X/n, n is the value of n;.  and £t = 1, 2
_ A A A A
n r m sample n, R R n(p,t)
75 .32 5 1l6,18,22,25,27 102 70 99, 29 30 29
*
16,18,22,25,28 195 80 190 30 32 31
34 .B7 4 14,18,20,26 507 77 504 31 33 31
< 0 91l 0 32 35 32
37 .17 20 4,4,4,4,5,5,5 65 25 66 11 12 12
5,6,6,6,6,7,9 154 27 159 13 14 14
9,10,10,10,21,11
48 .06 15 0,1,1,2,2,2,3,3 18 10 15 7
3,4,4,4,4,5,6 135 12 125 10 9
40 .17 12 6,7,7,7,8,8,9 32 26 40 21 24 22
9,9,10,11,16 61 32 79 23 28 25
55 .48 20 17,23,24,25,25 7L 69 71 43 47 44
26,26,26,27,27 79 74 81 45 50 47
28,28,28,29,30
30,30,31,33,38
60 . 24 15 11,12,12,12,13 67 49 67 24 26 2b
13,14,16,17,17 88 53 90 28 30 28

18,18,20,20,22
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Table 2.27

AA
The last two columns present the estimator n(p,t)

18,18,20,20,22

where p = X/max(Xy,..- X)), t =1, 2
) o A A A A AA
n P it sample n, Nu.e Op Opg n{p,t)
75 .32 5 16,18,22,25,27 . . 102 70 99 29 29 28
*
16,28,22,25,28 195 80 190 30 31 30
34 .57 4 14,18,20,26 | 507 77 504 31 29 28
< 0 9l @ 32 31 30
37 .17 20 4,4,4,4,5,5,5 65 25 66 11 12 12
5,6,6,6,6,7,9 ~ 154 27 159 13 14 13
9,10,10,10,11
11
48 .06 1% o0,1,1,2,2,2,3 18 12 15 6 6
' 3,3,4,4,4,5,6 °~ 135 12 125 8
40 .17 12 6,7,7,7,8,8,9 32 26 40 21 20 19
6,6,10,11,16 61 32 79 23 22 21
55 .48 20 17,23,24,25,25 71 69 71 43 43 42
26,26,26,27,27 79 74 81 45 45 43
28,28,28,29,30
30,30,31,33,38
60 .24 1% 11,11,12,12,13 67 49 67 24 24 24
13,14,16,17,17 88 53 90 28 26 25
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Table 2.28

M
The last two columns present the estimator n(p,t)

where B =1/2 and £t =1, 2

18,18,20,20,22

~ A A A A
n P m sample ny nis M Moes ni{p,t)
75 32 5 16,18,22,25,27 102 70 99 - 29 36 41
#
l6,18,22,25,28 195 80 190 30 37 42
34 .57 4 14,18,20,26 507 77 504 31 35 39
<0 91 w0 32 36 41
37 .17 20 4,4,4,4,5,5,5 65 25 66 11 13 14
5,6,6,6,6,7,9 154 27 156 13 14 15
9,10,10,,10,11,11
48 .06 15 0,1,1,2,2,2,3 18 10 15
3,3,3,4,4,4,4 135 12 125
5,6
40 17 12 6,7,7,7,8,8,9 - 32 26 40 21 20 21
9,9,10,11,16 61 32 79 23 21 23
55 .48 20 17,23,24,25,25 71 69 7% 34 50 56
26,26,26,27,27 79 74 81 45 52 58
28,28,28,29,30
30,30,31,33,38
60 .24 15 11,11,12,12,13 67 49 67 24 28 31
13,14,16,17,17 88 53 90 28 30 32
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CHAPTER THREE

BAYESIAN BESTIMATION OF THE BINOMIAL PARAMETER

3.1. Ihtroduction

In this chapter, we will consider the Bayesian approach
for estimating the parameter n. We willltake two types of
prior, non-informative prior and Poisson prior of n and as
we saw in chapter one these two types of priors have been
considered by Hamedani and Walter (1988). Assuming p is
known and using quadratic loss function, the mean of the
posterior distribution ©of n is the Bayes estimator. The
Bayes estimator does ndt possess a closed form. We used a
sipulation nethod for 6btaining’the mean square error and we
compare it with the mean square error of the MGF based
estimation Sm,t' For unknown p, we assume that n and p are
independent and we take a beta prior distribution for-p.

Also, the Bayes estimator does not possess a closed form.

3.2. Bayes Estimators

Let X = (Xl, .oe s Xm) be a random sample taken from
binomial distribution b(n,p), where n is the parameter of

interest, n e {1, 2, ...}. Then, the likelihood function is

. : - ey m
L(n,ple) = " (1-p)(PE) ”1[2'] (3.2.1)
= 1
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1
where T = — E: <

now, we discuss the cases p known and p unknown separately.

1. p is known. Let g(n) be a prior distribution for n. One

sensible form for g(n) is

: em?L An
gltn) = ——— , n=20,1,
n!
another prior distribution of n (improper) is gz(n) = 1

for all n.
The posterior distributicn for n with respect to gl(n)

is
n
M mn
[igl[mi]}(l ®) n!
nl(nlg,p) = _ , Nz a(m) (3.2.2)
B o(n mn A"
E: 'igl[mi} (1-p) ;?
n=ux :
(m)

The posterior distribution for n with respect to g,(n) is

1

[i#l[i,]](l-p)m“

n z «(m) (3.2.3)
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The Bayes estimator of n Ww.r.t squared error loss

function is given by the mean .of the posterior. Thus

® n

E: n,{iﬁl[gi]](l_p)mn %T

A =X
ng, = () (3.2.4)
e, T -
T fn _mn M
Y (6™
n=X )

is the Bayes estimator w.r.t gi(n)

E: i [igl[gi]](l-p)mn |

h = (m) (2.2.5)

> |G,

n=X(m)

(1-p)™"

is the Bayes estimator w.r.t to gz(n).
These estimators does not possess a closed form expect

A
in the univariate case, For m = 1 (3.2.4) reduced to ng

X q 1
= X+aq and (3.2.5) reduced to n, =- + —,
2 p P

- Hamodani and Walter (1988i considered these estimators
just in the univariate case and they apply these formulae
- to some examples of Draper and Guttman (1971). In this

work, we will deal with these estimators in the
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maltivariate case.

2. p is unknown. We assume that n and p are independent. Let
g(n), h(p) be the priors. One sensible for h{p) is ﬁhe
beta function h(p) « pa(l-p)B, 0 <p < 1l. _

The joint posterior is

m _ =
[-ﬂl[g.]] e (g _py M=) B )
1= 1
-ﬁfn,p|g) = . (3.2.6)
w0 1
m — -....
§: [_ﬂl[g,]]g(n) [pm“+“(l~p)m(n €I+ gp
1= 1
n= . .0
(m)

we can integrate p out from (3.2.6) to get the marginal

distribution:for n which is

moe C(m(n-z)+8+1)
7 )|
i=1%"1 I'(mn+oa+B+2) i
n(n|z) = (3.2.7)
- ( n I'(m(n—)+p+1)
A
1=1%V"1 F(mpn+a+B3+2)
()

either with respect to gl(n) prior or gz(n).the resulting
estimator of n does not appear to have sinple closed
form. For the case p unknown, our main concern 1is the
stability of the Bayes estimators. We try to analyze the

example listed in Table (2) of Olkin, Pethan and Zidek
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(1981), but we could not obtain the Bayes estimators for
this example. The difficulty of obtain numerical values
arises from the gamma function, which is a part of the
Bayes estimator.

3.3. Numerical comparisons

In this section, we make comparisons (as in sec. 2.3)

A P
between the Bavyes estimators (nB ; Ng ) and the estimator
1 2

based on the (MGF) ﬁ for small m, n, 10000, b(n,p),

m,t
samples of a given m were simulated for m,n = 3, 6, 9, t =
0.05, p =0.25, 0.5, 0.75 and A = 3, 6, 9, We describe the-
method of simulation in the following stebs.

1. Fof a given n and p, generate a random sample of size m

from b(n,p),
2. Order the sample obtained in step 1,
3. Sbstitute the sample obtained in step (2) and in (3.2.5)

~

in (3.2.4) to get n

I n ¥
By" "By
A
4. Repeat stesp (1, 2, 3) 10000 times to get ng (i), i=1,2,
1
..., 10000,
10000
A A 2
5. Approximate the MSE by: MSE(nB )= 2: [nB (i}—n] //10000,
1 1l
1
10000
Fa A T 2
and MSE(n, ) = N, (i}-n 10000
B2 B2 ]

i=1
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10000

~ -~
6. Approximate the bias Bias(nB } = E: [nB (i)//lOOOOJ—n,
1 i
10000 =1

Bias(ﬁBz) = E: [ﬁBz(i)//lOOOO]—n

i=1

We report the efficiency of ﬁm & with respect to HB in
!
1

(3.1) - (3.3). Tables (3.4) - (3.6) presents the absolute

ratio of bias of ﬁm & with respect to HB . Table (3.7) pre-
. , 1

sent the efficiency of ﬁm " with respect to BB . Table (3.8)
4
2

present the absoluet ratio of bias of ﬁm & with respect to
£

N, =«
BZ
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Table 3.1

A A
The efficiency of n with respect to ng , A = 3, t = 0.05
-= ; N

n
m P 3 6 9
.25 0.267958 0.605257 1.36533
3 .5 0.549462 0.767981 1.43903
.75 0.548113 0.760383 1.10750
.25 " 0.439146 0.716706 1.51377
6 .5 0.652585 0.830507 1.36353
.75 0.2493851 0.693017 0.96844
.25 0.567716 S 0.777172 1.52195
9 .5 0.656713 0.812232 1.27652
.75 0.083329 0.55744 0.,91628
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Table 3.2

A A
The efficiency of n . with respect to ng, , A = 6, t = 0.05
!
1

n
m P 3 6 9
.25 1.06687 0.258719 0.486968
3 .5 1.149296 0.565138 0.696598
.75 0.780394 0.734798 0.782607
.25 1.15251 0.444966 . 0.585179
6 5 1.02189 0.732105 0.803247
.75 0.346131 0.680863 0.781974
.25 1.15667 0.571996 0.66742
9 .5 0.91498 0.744915 0.817796
.75 0.101766 0.565158 0.780233
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Table 3.3

A A
The efficiency of n with respect ton, , A =9, £t = 0,05
m,t Bl

it
m P 3 6 9
.25 3.12411 0.639484 0.223289
3 .5 2.29087 0.890412 0.543031
.75 1.16501 0.853714 0.725294
.25 2.51021 0.84304 0.399356
6 .5 1.57069 0.963691 0.786296
.75 0.47278 0.749334 0.783296
.25 2.23462 0.922563 0.536446
9 .S 1.26063 0.933045 0.802864
.75 0.14436 0.622487 0.765647
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Table 3.4

Y
The abgsolute ratio of bias of n w.r.t , A = 3, £=0.05
m,t Bl
It
m P 3 6 9
.25 4.8933 18.528 40,1027
3 .5 © 3,9304 40,5055 44,381
.75 4,1651 33.477 66.6125
.25 4,9293 30.47 49.5713
6 .5 10.282 16.608 38,6005
.75 5.8522 48,569 21.6123
.25 86.8723 85.6492 38.1049
9 .5 11.1704 28.279 58.15
.75 2.9487 17.7948

15.4958
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Table 3.5

A Fal
The absolute ratio of bias of nooy w.r.t ng , A = 6, £=0.05
: , |

1
n

m P 3 6 9
.25 59,3265 5.56163 18.9369

3 .5 47 .8269 17.1085 19.2142
.75 21.0438 5,2727 27.326
, 25 61.934. 2.0557 21.1293

6 .5 64.1745 4,324 65.6269
.25 14,5117 27,8713 34,9198

9 5 42,0259 9.161 21.2292
.75 7.308 12.7796 6.5129
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Table 3.6

M S
The absolute ratio of bias of n w.r.t Ng A =9, t=0.05

m,t

1
141

m P 3 6 9
.25 36.396 17.683 1.23827

3 .5 85.295 22.7252 3.,98491
.75 35.3531 36.5753 2.03318
.25 32.4101 29.444 0.37052

5 .5 40,2839 36.56 6.1.9496
.75 24.0386 11.5171 2.30568
.25 17.4806 4.20938 1.32262

9 .5 78.5872 75.29 2.97239
.75 10.86 37.0875 2.07856
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Table 3.7

The efficiency of f with respect to n , £ =0.05
: m,t B2
n

P 3 6 9

.25 1.32724 0.8545 0.478984
.5 1.06067 1.01654 0.821873
.75 0.709384 0.87076 0.899851
.25 1.13169 0.9903 0.69445
.5 0.92268 0.99392 0.956701
.75 0.30215 0.74015 0.862086
.25 1.06929 1.03728 0.851327
.5 0.84010 0.93789 0.98319
.75 0.61911 0.848838

0.08195
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Table 3.8

A Fal
The absolute ratio of bias of n w.r.t n, , £t = 0.05
m,t B2
n

D 3 6 9

.25 23.5%711 9.039 0.2573
) 23.6299 10.4853 5.4142
.75 9.1713 14.474 11.0105
.25 32.823 14.077 4.3366
.5 31.2699 14.81 25.8636
.75 8.9613 4,412 4,0762
+ 25 30.3785 13.1098 10.2534
.5 21.2744 26 .17 8.4853
.75 4,.5209 15.918 8.0b76
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3.4 Results of numerical comparisons

1.

. M
Tables 3.1-3.3, presents the efficiency of n with

m,Et

A
respect to Ny for £ = 0.05, A = 3, 6, 9.
1

a. For A = 3, the tabulated results suggest that high
efficiency (close to 1) is achieved for values of n =
9 and p = 0.25, 0.5, 0.75.

b. For » = 6, high efficiency (close to 1) is achieved
for value of n = 3 and p = 0.25, 0.5, 0.75.

9, high efficiency (close to 1) is achieved

c. For A
for value of n = 3 and p = 0.25, 0.5, 0.75."
Tables 3.4-3.6, presenté the absolute ratlo of the bias

-~
of n

N with respect to BB . The tabulated results
! .

1
suggest that, the ratio of the absolute of the bias is

always greater than 1 for a = 3, 6, % and p = 0.25, 0.5,
0.75. '
A
Tables 3.7, present the efficiency of no ot with respect
. !

A
to n, . High efficiency (close to 1) is achieved for

B,

values of n = 3, 6 and p = 0.25, Q.b.
Table 3.8, present the absolute ratio of of the bias ﬁm £
’ f

with respect to a The tabulated results suggest that,

B,

the ratio of the absolute bias is always greater than 1.
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CHAPTER FOUR

CONCLUDING REMARKS AND RECOMMENDATIONS

4.1 Concluding remarks

1. Some members of the family of estimators indexed by t can
be used instead of the MLE or MME, in particular, those
correspond to small values of t.

2. The estimators underestimate n for positive values of t
and overéstimate n. for negative values of t. So, the
negative values of t are recommended when the penalty for

underestimation is more than that of overéétimétion.

3. The estimators (although being stable) are not doing well

when p is unknown. This is also applied to the MME and MLE.

4.2 Recommeﬁdations

1. Further work should be done on Bayesian estimators of n.
For example one may use other types of priors such as
negative binomial distribution.

2. Moment generating Ffunction approach can be used in some
similar problems such as hegative binomial.

3. Other methods should be searched for in the case of

unknown n and p.
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c ___________________________________________________________
c THIS PROGRAM IS TO CALCULATE THE MEAN SQUAR ERRORE
A
C AND THE BIAS FOR THE BAYES ESTIMATOR (ny )
2
c ———————————————————————————————————————————————————————————
INTEGER IR(10000),I0PT,N,NR,RA(10000) ,WW, 6 MAX, INF, I1,J
&,I2,1I,16
REAL P,T, Q,S,PRO,S5,NP,GAMMA,I,EXACT,S2,510,811,BIA
EXTERNAL, RNBIN, RNOPG, SVIGN, BINOM
PRINT#*,’ WITHOUT POISSION .... '
ITER = 10000
INF = 14
I0PT = 6
DO 3000 N= 3,9,3
PRINT*,'N = ,N
DO 4000 NR = 3,9,3
PRINT*,'M = /,NR
DO 5000 P = .25,.75,.25
PRINT*,'P = /,P ]
Q = 1.- P
s11 = 0.
S10 = 0.
DO 1000 II=1,ITER
CALL RNOPG (IOPT)
CALL RNBIN (NR, N, P, IR)
s5 = 0.
DO 3 J=1,NR
3 a5 = 85 + IR(J)/FLOAT(NR)
CALL SVIGN (NR, IR, RA)
MAX = RA(NR)
S = 0.
82 = 0.
DO 1 I = MAX,INF
PRO = 1.
PO 2 Il = 1,NR
16 = I _
2 PRO = PRO * BINOM(I6, IR(I1))
S =S+PRO* (P** (S5*NR) ) *Q** (NR* (I-S5))
1 S2=S2+PRO*P#* ( S5*NR) *Q** (NR* (I-S5) ) *I
NP = S2/S

S10 = S10 + (NP - N)**2 / FLOAT(ITER)
S11 = S11 + NP / FLOAT(ITER)
1000 CONTINUE |
BAI = (811 — N)
PRINT*, 'MSE = /,S10
PRINT*, BIAS= ’,BAI
5000 CONTINUE o |
PRINT#*,/==--=== - END OF P ====== '
4000 CONTINUE
3000 CONTINUE
END
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Cc

C THIS PROGRAM IS TO CALCULATE THE MEAN SQUAR ERRORE

C

C AND THE BIAS FOR THE BAYES ESTIMATOR (HB )
INTEGER

&,I2,I1,I6
REAL P,T,9,8,PRO,85,L,NP,GAMMA , G, I,EXACT,82,510,511,BIA

IR(15),I0PT, N,NR, RA(1%5),WW,MAX,INF,I1,J

1000

EXTERNAL

PRINT*,
ITER
INF
TOPT
DO 2000
PRINT*
DO 3000
PRINT*,
DO 4000
PRINT*,
PRINT*,
DO 5000
PRINT*,
PRINT#,
PRINT*,
Q

S11
S10

DO 1000
CALL
CALL
S5
DO 3
S5
CALL
MAX
3

82
DO 1
PRO
DO 2
I6
PRO
G

Il ll II

S =S+PRO* (P** (S

PRO * BINOM(I6,

I T O T AT PO
ol

RNBIN RNOPG SVIGN, GAMHA BINOM
'WITH POSSION
10000

14
6
N =
N
NE

3,9,3

',N

3,9,3
‘M r ,NR

P .25,.75, .25
!P - P
'++++++++++++++++++++++++++++++++++++++++++++'
L = 3.,
'E$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'
fLAMDA = /,L
’$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'
1.- P

‘0.

0.

II=1,ITER

m i nu

RNOPG (IOPT)
RNBIN (NR,
= 0.
J=1,NR

N, P, IR)

S5 + IR(J)/FLOAT(NR}

SVIGN (NR, IR, RA)

RA(NR)

IR(I1))
GAMMA(I + 1)
SS*NR) ) #Q% % (NR¥ (I-S5) ) * (L**I/G)

S§2=82+PRO*I*P** ( S5*NR) *Q#*#* (NR* (L-55) ) * (L**I/G)

NP =
510

S2/S
= 510

+ (NP — N)*%2 - / FLOAT(ITER)

811 = S11 + NP / FLOAT(ITER)
CONTINUE

BAT =
PRINT*,

(S11 - N)
IMSE = ’,510
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5000

4000
3000
2000

PRINT*, 'BIAS= /,BAL
CONTINUE

PRINT* ; em— e e e ==
PRINT*, *

PRINT#*, !

CONTINUE

CONTINUE

CONTINUE

END

END OF LAMDA
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C ___________________________________________________________
C THIS PROGRAM IS TO CALCULATE THE MEAN SQUAR ERROR

C .

¢ AND THE BIAS FOR THE MAXIUMUM LIKELIHOOD ESTIMATOR (n~1l)
C

C AND THE MOMENT GENARATING FUNCTION BASD ESTIMATORF(h”*m,t)
c ___________________________________________________________

INTEGER TR(10000),I0PT,N,NR,RA(1000),L,U,RAN, AL, ZZ KK,
&,K1,ITER,VV,6 MM, THETA
REAL 82,T,P, Q, S,B, LIK(1000),RAA(1000),0LIK(1000),SS,
&§BIAS,BRB,BBB2,BIAS2,EFF,ESTM,EST2,EESS,

EXTERNAL  RNBIN, RNOPG, SVIGN

ITER = 10000
P = 0.5
Q = 1.~ P :

DO 1000 NR = 3, 15, 3

PRINT*,'M = ', NR
'~ PRINT*,’ MSE(L) MSE(N~T) BIAS(T) BIAS(L) EFF(L/NT)’
DO 1000 N = 3, 15, 3
PRINT* , / N=1+, N
) DO 2000 T = .1,.1
PRINT*, * T = ',T

PRINT® | o mme e e e 8 e e e e e e et s o e e e d

SSs = 0,

EESS = 0.

BBB = 0.

BBB2 = 0

DO 200 WW=1l,ITER

CALL RNOPG (TOPT)

CALL RNBIN (NL, N, P, IR)

CALL SVIGN (NR, IR, RA)

s =0.

DO 1 I=1,NR

1 S = S + IR(I)
sz = 0.
DO 4 VVv=1,NR
4 S2 = 82 + EXP(IR(VV)*T)/FLOAT(NR)

EST2 = ALOG(S2)/ALOG(Q+P*EXP(T))

IF {(RA(1) .EQ. 0 .AND. RA(2) .EQ. 0 .AND. RA(3) .EQ. O
&.AND. RA(4) .EQ. 0 .AND. RA(5) .EQ. O .AND. RA(6).EQ.O
&.AND. RA(7)} .EQ. O .AND. RA(8) .EQ. 0 .AND. RA(9).EQ.C
%.AND. RA(10)} .EQ. O .AND. RA(1ll) .EQ. 0 .AND. RA(1l2)
&.EQ. 0 .AND. RA{13) .EQ. 0 .AND. RA(14) .EQ. O
&.AND. RA(15) .EQ. 0) THEN

KL =1
GOTO 333
ELSE
_ GOTO 35
ENDIF
35 L. = INT{RA(NR)/(1. — {(Q**NR)))
U = INT(S/(1.-(Q**NR)))
DO 2 J=L,U
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LIK(J) = 1.

DO 24 HH=1,NR

LIK(J) = LIK(J}*( BINOM(J, IR(HH))*(P**IR(HH))*(Q**(J-IR(H
24 CONTINUE

2 CONTINUE
DO 3 K=L,U
3 OLIK(K) = LIK(K)

DO 9 AA=L,U-1 .

DO 8 ZZ=AA+1,U | :

IF (OLIK(AA) .LT. OLIK(ZZ)) GOTO 8
QQ = OLIK (3Z)

OLIK(ZZ) = OLIK (AA}-
OLIK({AA) = QQ

8 CONTINUE

9 CONTINUE

DO 22 KK=L,U
IF (OLIK(U) .NE. LIK(KK)) GOTO 22

K1 = KK
22 CONTINURE o
333 BBB2 = BBB2 + K1/FLOAT(ITER)
SS = SS + (K1 = N)#*%2/FLOAT(ITER)
EESS = EESS + (ESTZ ~ N)**2/FLOAT(ITER)
200 BBB = BBB + EST2/FLOAT(ITER)
BIAS = (BBB - N)
BIAS2=(BBB2 - N)
EFF = SS/EESS
PRINT*, _ ’
PRINT*, S8 ,EESS,BIAS,BIAS2,EFF
PRINT*, * | !

2000 CONTINUE T .
PRINT*,’++++++++++++++++++++++++++++++++++++'
1000 CONTINUE
END
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Program 4
THIS PROGRAM IS TO CALCULATE THE MEAN SQUAR AND
THE BIAS FOR THE MAXIUMUM LIKLEIHOOD ESTIMATOR (n ) AND

THE MODIFIED MOMENT GENARATING FUNCTION BASD ESTIMATOR.

INTEGER IR(10000),IOPT, N,NR, RA(L000),L,U,RAN,AA
&,K.,ITER,VV,MM,ZZ , KK, THETA
REAL, 82,T7,P, Q, §,B, LIK(1000),RAA(1000),0LIK(1000),
4BIAS,BBB,BBB2,BIAS2, EFF,ESTM,SS,EST2, EESS
EXTERNAL RNBIN, RNOPG, SVIGN |
PRINT*, "MODIFY. 0o envs’ :
DO 9000 P = 0.5,.5
PRINT*,’P = /,P
Q =1.-P
DO 3000 NR= 10,10
PRINT*,’M =’ ,NR
DO 2000 N=10,10
PRINT*,’N = ,N
DO 1000 T=-.1,-.05,.05
PRINT*, /T =/ ,T
CALL RNOPG (IOPT)
CALL RNBIN (NR, N, P, IR)
CALL SVIGN (NR, IR, RA)
PRINT*,  THE QBSE’
PRINT*, (IR(AZ) ,AZ=1,NR)
s = 0.
DO 1 I=1,NR
1 S =8 + IR(I)
S2 = 0.
DO 4 VV=1,NR
4 g2 = S2 + EXP(IR(VV)*T)/FLOAT(NR)
EST2 = ALOG(S2)/ALOG(Q+P*EXP(T))
IF (EST2 .LE. 1.) THEN
ESTM = 1.
ELSE
ESTM = INT(EST2+.5)
ENDIF
IF (RA(1) .EQ. O .AND. RA(2) .EQ. O .AND. RA(3) .EQ. O
&.AND. RA(4).EQ.0 .AND. RA(S5) .EQ. O .AND. RA(6) .EQ. O
&.AND. RA(7)}.EQ.0 .AND. RA(8) .EQ. 0 .AND. RA(9) .EQ. 0
&.AND. RA(10) .EQ. O ) THEN -
K1 = 1
GOTO 333
ELSE
GOTO 222 -
ENDIF
222 L INT(RA(NR) /(L. = (Q**NR)))
U INT(S/(1.-(Q**NR)))
Do 2 J=L,U
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W o

22
333

1000

2000
3000

2000

LIK(J) = 1.

DO 24 HH=1,NR

LIK(J) = LIK(J)*( BINOM(J, IR(HH))*(P**IR(HH))*(Q**
&(J~IR(HH})))

CONTINUE

CONTINUE

DO 3 K=L,U :
OLIK(X) = LIK(K) ; e
DO 9 AA=L,U-1

DO 8 ZZ=AA+1,U

'IF (OLIK(AA) .LT. OLIK(ZZ)) GOTO 8

00 = OLIK (33)

OLIK(ZZ) = OLIK (AA)
OLIK(AA) = QQ
CONTINUE

CONTINUE

DO 22 KK=L,U

IF (OLIK(U) .NE. LIK{KK)) GOTQ 22

K1 = KK

CONTINUE

PRINT* , 'MGFM =',ESTM

CONTINUE

PRINT* P "''i"+'i"++-I-'++'l-'++++--|---I"|-+-i-++-i‘-+-l'-+-I-+-i‘++'"I--i-++-i-+~+'--l--++++-i--+-+-+‘r
CONTINUE -
CONTINUE

PRINT* ,!——====—~ ~ END OF P - = = = !

CONTINUE

END
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13

22

444

Y A S T e e - S — - e o S P N S — — e Bt e St Y
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INTEGER IR(1000),NR,RA{1000)

REAL 52,T,P, Q, S,B,SS,EST2,VAR,SUM2,ASD6,
§ESTM,T1,T2,510,811, ASD F,X, RCO, sss ASDl Asoz ASD4, ESTT
EXTERNAL  RNBIN, RNOPG SVIGN |
PRINT*, ’ INPUT OBS. NN AND SAMPLE SIZE AND T1 T2 ’
READ*,NR, NN, T1, T2

DO 13 I=1,NR

READ* , IR(I)

510 = Q.
585 = 0.
SUM2 = 0,

CALL SVIGN (NR, IR, RA)

DO 22 UU=1,NR

S8S = 888 + IR(UU)/FLOAT(NR)

ASD6 = SSS/FLOAT(NN)

DO 5 AS=1,NR

S10 = S10 + EXP(TR{AS)*T1)/FLOAT(NR)
S1t = 0.

DO 6 ASl=1,NR

S11 = S11 + EXP(IR(ASL1)*T2)/FLOAT(NR)

ASD4 = ALOG(S10)/ALOG(.5+.5*EXP(T1))

ASDL = ALOG(SL11)/ALOG{.5+.5%EXP(T2))

ASD3 = SSS/RA(NR)

ESTT = ALOG(S10)/ALOG((1.-ASD3)+ASD3*EXP(T1))

ESTT2 = ALOG(S11)/ALOG((1.-ASD3)+ASD3*EXP(T2))
ASD = ALOG(S10)/ALOG(S11)

ESTT4 = ALOG(S10)/ALOG{(1.-ASD6)+ASD6*EXP(T1))
ESTT6 = ALOG(S11)/ALOG((1.—-ASD6)+ASDE*EXP(T2))
DO 9 X=0.0001,1.,.0001

Fo=( (1.-X)+X*EXP(T2) )#*ASD- { (1.-X)+X*EXP(T1) )
IF (F .GT. .00001) GOTO 9

ROO = X

GOTO 444

CONTINUE

PRINT*,’R O O T = ’,ROO

EST2 = ALOG(S10)/ALOG( (1.-RO0)+ROO*EXP(T1))

IF (EST2 .LE. 1.) THEN

ESTM = 1.
ELSE
ESTM = INT(EST2+.5)

ENDIF

PRINT#*, ‘n(.5,2)n(.5,1)n(MAX,1) n(MAX,2)n(NN,1)n(NN,2)n
&(ROOT, 1) 7

PRINT* , / 2o m e s e e e s e e m S E e m s s s e O m S S S ST
-&======= !

"PRINT* ,INT(ASD1), INT(ASD4) INT(ESTT) ,INT({ESTT2)

&, INT(ESTT4) INT{ESTTG),INT(ESTM)
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